KDOT LRFD Prestressed Beam Design Guidelines Summary

Section Properties

- For Strength Limit States use Article 5.7.2
- For Fatigue and Services Limit States, use gross un-cracked and un-transformed sections without reductions for reinforcement per *Article 5.7.1*
- Composite sections use the effective flange = tributary slab width, Article 4.6.2.6

Concrete Stresses

LRFD Design Stress Limit, (ksi) at Service Limit States

Stage	Stresses, (ksi)	Article (s)
Initial Compression	0.60 f'ci	5.9.4.1.1
* Initial Tension	$0.24\sqrt{f'_c}$	5.9.4.1.2
Final Compression	$0.60 f_c'$	5.9.4.2.1
Final Tension	$0.0948\sqrt{f'_{c}}$	5.9.4.2.2
Final Allowable Compression with LL+1/2(P _{eff} +DL)	$0.40f_{c}$	5.9.4.2.1
Final DL Compression	0.45 f' _c	5.9.4.2.1
Shipping & Handling Compression	0.60 f' _c	5.9.4.2.1
* Shipping & Handling Tension	0.24 \sqrt{f'_c}	5.9.4.1.2

^{*} Where A_s is proportioned as stated in Article C.5.9.4.1.2

Concrete Strength and Strand Usage

- Use 0.5 in. 270 ksi strands for K2 and K3 with $f'_{ci} = 4$ ksi and $f'_{c} = 5$ ksi
- Use 0.5 or 0.6 in. 270 ksi strands for K4 with up to $f'_{ci} = 5$ ksi and $f'_{c} = 6$ ksi
- Use 0.6 in. 270 ksi strand for K6 with $f'_{ci} = 5$ ksi and $f'_{c} = 6$ ksi

Note: Adjust f'_{ci} in 0.10 ksi increments as needed

Calculation of Losses

- Include elastic shortening per *Article 5.9.5.2.3*
- Use the "Approximate Method" for time dependant losses, *Article 5.9.5.3*; this calculated value can be used as a lump sum for software which does not have the "Approximate Method" available.

Diaphragms

• Use temporary intermediate diaphragms for the following conditions

Up to 40 ft. spans: none are required

40-80 ft. spans: use at first and third quarter points

80 -120 ft. spans: use at first three quarter points

Greater than 120 ft. spans: use a special design

- Temporary diaphragms are property of the contractor, to be removed from site
- Use CIP diaphragms at all supports (detail per Bridge Design Manual)
- Use CIP intermediate diaphragms when the structure is heavily skewed or splayed

<u>Time to Continuity</u> (Article 5.14.1.4.4)

- KDOT assumes continuity is made at approximately 50 days; use this to calculate camber The minimum beam age will be 28 days at the time of continuity
- Restraint moments are not used in determining beam design moments
- The CIP continuity diaphragm is considered partially effective per Article 5.14.1.4.5
- Full continuity is assumed at interior supports for determining the required slab reinforcement at the Strength Limit State

Analysis (+M) regions

- Beam self weight will be resisted by considering simply supported member conditions for Service and Strength Combinations
- Non-Composite DL will be resisted by considering simply supported member conditions for Service and Strength Combinations
- Composite DL will be resisted by considering simply supported member conditions for Service and Strength Combinations
- Live Load and Dynamic Load will be resisted by considering simply supported member conditions for Service and Strength Limits States.

Analysis (-M) regions

- Composite DL will be resisted by considering the members as continuous
- Live Load and Dynamic Load (LL/IM) will be resisted by considering the members as continuous
- As a minimum, reinforce the slab per Article(s) 5.7.3.2, 5.7.3.3 and 5.7.3.4
- As a minimum, develop the slab reinforcing steel past the quarter point of the longest span, in-lieu of *Article 5.14.1.4.8*, and then begin to stagger the bars to be cut-off

Strand Extension (Article 5.14.1.4.9a)

- Provide positive restraint moment capacity at piers and abutments by extending strands a minimum of 36 in. to resist 0.6*M_{cr}
- As a minimum extend six strands; four on the bottom and two on the top

Confinement /Splitting (Article 5.10.10)

- Do not exceed 3 in. spacing within the splitting zone defined as a region h/4 from the beam end
- Do not exceed 6 in. spacing within the distance of 1.5d for the confinement reinforcing steel

Shear (Article 5.8.3)

• Do not exceed 18 in. spacing, or exceed 6 in. change in spacing, or reduce the shear capacity by more the 50% at a section along the member